Biochemical cellular damage indicators and in situ cell death in chronic alcohol consumption: Pseudomonas aeruginosa induced pneumonia rat model
نویسندگان
چکیده
In this study, our aim was to investigate whether cellular alterations occurred in liver and lung tissue in presence of chronic alcohol ingestion and Pseudomonas aeruginosa pneumonia related to oxidative stress and in situ cell death. Male wistar rats were divided into five groups: the sham group fed by normal solid diet, two control groups; one fed by normal liquid diet, and the other fed by liquid diet plus ethanol, two pneumonia groups induced by Pseudomonas aeruginosa; one fed by normal liquid diet, and the other fed by liquid diet plus ethanol. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nickend labelling analysis was performed to confirm in situ cell death. Serum alanine amino transferase and lactate dehydrogenase activities, and tissue and serum malondialdehyde levels, paraoxonase, arylesterase activities, and tissue caspase-3 activities were determined. Serum alanine amino transferase activities of both ethanol given groups were higher than the other groups (p<0.05). Liver malondialdehyde level was increased in ethanol with pneumonia group (p<0.05). Lung malondialdehyde levels were not different among groups. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelling positive cell ratio in the liver was higher in both ethanol given groups and normal liquid diet with pneumonia group than sham and control group fed by normal liquid diet. Liver and lung caspase-3 activities were not different among groups. Although serum paraoxonase activities were lower in both pneumonia groups, it was not statistically significant. It may be interpreted as growing infection during chronic ethanol ingestion that causes increased liver damage through oxidative stress.
منابع مشابه
Iron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species
Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...
متن کاملIron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species
Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...
متن کاملChinese green tea consumption reduces oxidative stress, inflammation and tissues damage in smoke exposed rats
Objective(s):One cause of cigarette smoking is oxidative stress that may alter the cellular antioxidant defense system, induce apoptosis in lung tissue, inflammation and damage in liver, lung, and kidney. It has been shown that Chinese green tea (CGT) (Lung Chen Tea) has higher antioxidant property than black tea. In this paper, we will explore the preventive effect of CGT on cigarette smoke-in...
متن کاملT2-Toxin Hepatotoxicity in the in situ Rat Liver Model
T-2 toxin, a trichothecene mycotoxin, is considered to be one of the most toxic compounds that are produced by molds, particularly the Fusarium species. Fusarium species have been recognized as a great agricultural problem. They occur worldwide on a variety of plant hosts and cereal grains. The aim of this study was to investigate T-2 toxin-induced liver injury using in situ perfused rat liver....
متن کاملPseudomonas aeruginosa induced lung injury model.
In order to study human acute lung injury and pneumonia, it is important to develop animal models to mimic various pathological features of this disease. Here we have developed a mouse lung injury model by intra-tracheal injection of bacteria Pseudomonas aeruginosa (P. aeruginosa or PA). Using this model, we were able to show lung inflammation at the early phase of injury. In addition, alveolar...
متن کامل